SOLUTION OF A MIXED BOUNDARY-VALUE PROBLEM
BY THE BUBNOV—GALERKIN METHOD

V. F. Kravchenko and A. V Tokarenko UDC 536.24
A method is proposed of constructing a sequence of coordinate functions with the aid of R~

functions [1-3], for the solution of a mixed boundary-value problem. The approximate solu-
tion to the given problem is qualitatively the same as that obtained by the relaxation method

[6].

1. We consider the boundary-value problem

Lu=—Au-tcu=Ff c<0, (x, y)€Q, (1)
(—_ait_ +Uku> =0 (=1, 2), (2)
on ()
ou —o. 3)
on  |pym

2
Here Q is a finite two-dimensional region bounded by a piecewise-smooth contour I'y= 2 (Fgl) U I,}z;), within

=

which the inner normal Vi(k) (Fig. 1) is defined almost everywhere.

According to the Bubnov—~Galerkin method, the approximate solution to the boundary-value problem
(1)-(2) will be represented in the form

Uy, (x’ y)= };lciq)i (JC, y)! (4)

where ¢; are arbitrary constants yet to be determined and ¢; are coordinate functions, elements of the se-
quence

Py Pgy ooy Py oo ey (5)

which are a sufficient number of times continuously differentiable
within the region @ and which satisfy conditions (2)-(3) at its boundary
T'y. The other requirements usually imposed on a system of coordi-
nate functions (4) are also met, as will become immediately apparent
after the system has been constructed by the following method.

We will show here the basic steps in constructing a sequence of
coordinate functions.

By the procedures described in {1-3], we construct functions

r wg(x, y) which satisfy the conditions:
o, r, =0, 6)
Fig. 1. General formulation of do, | _ 1 )
a mixedboundary-value problem. M, Ip, ’
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Fig. 2. Cross section of an electrical coil in the shape
of a square frame (a) and surface representing the tem-

perature distribution in a symmetrical coil element (b).

0, >0, (x, y)€Q (s=0,1, 2. (8)
We then introduce the linear differential operator D defined as follows:
ov ov
Duv= — -, ,
v=qa,v+a F a, % 9

where

@, Oyfy+ 0ofy G — O @ — o (10)
0 + 0, fi+1fy ! T T

According to conditions (6)-(8), operator D has the following properties:

: (11)
1, (&)

Qy =

v
Dulp,tk) == ( 3

4,0
ny

Du|p,t = 0. (12)

The coordinate functions ¢j(x, y) will be sought in the form
P = Poi -+ Pz, (13)
where Py, Pyj are arbitrary functions in the class C%(Q).
Let us consider the differential relation
Dv -= w,g, g€C*(Q), (14)

which is defined inside the region @ and which at segments I‘l(k), I‘gk) of the boundary becomes the respec-~
tive condition (2).

Inserting expression (13) for ¢; into (14) yields

D ($y3) -+ by Doy 4 0y DYy; = wg. (15)
In the vicinity of contour T’
@y I, = 0(®y), Daylr, = 1+ 0(a,), (16)
and, therefore, (15) becomes the condition
Dby, -+ y; = 8", g €C*(Q). {17
From here
Yy == — Dfy; + g’ (18)

After inserting ¥y from (18) into (13), we have

Q; = Pg; — @Dy, + w2g". (19)
Moreover, functions ¢; satisfy the boundary condition (2) exactly with any arbitrary functions g, g"
€ Cl(@).
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Next, let {;}i=; denote a system of coordinate functions which is complete with respect to region .
Letting g" = 0 and ¢35 = Aj in (19), we obtain a final expression for the elements ¢; of the sought sequence
of coordinate functions:

¢, = h; — ©,Dh;. {20}

The arbitrary constants c; are determined from the system of equations

i3

N o wde=Giw) =12 ... 0. (21)
=]
2. As an example, we will solve the problem of determining the steady-state temperature field of
an electrical coil wound in the shape of a square frame (Fig. 2a).

The thermal conductivity of the coil A is assumed constant and Joule heat is generated in the coil
according to the relation

g = go(1 --ou), (22)

where g, denotes the quantity of heat generated at a fixed temperature uy and ¢ is the temperature coeffi-
cient. The outer surface s, and the inner surface s, of the coil transfer heat to the ambient medium ac-
cording to Newton's law: ’

[}\‘ - a_.u.._. -+ o4, (u_ uk) ] =0 (k = l, 2). (23)
anh RE

Here «, is the heat transfer coefficient for the respective surface sy, uy is the ambient temperature at

surface s, and ny is the direction of the outer normal to sy.

Assuming A = 1.488 keal/m -h-°C, g, = 768.96 kcal/h-m®-°C, a, = 40y, ay = 0.0036/°C, and u,
= 0°C, we are now to determine the temperature field of the coil with the dimensions by = 5.08 cm and b,
= 1/2b1.

The steady-state temperature distribution in a symmetrical section element of the coil (Fig. 2a)
satisfies the differential equation

Lu=—Autcu=f f= _‘1& ¢ = —af
with the boundary conditions
ou | ! o
(73; N Gku,} I'm(k) = o ﬁi—’ = Oalt,
Oult
on T, (%)
3. Under conditions of our problem, functions wg(x, y) become’
“)1=’f1‘1a‘fz""l/ﬁ+fg- (24)
®z=g1+gz—l/gf+g§: (25)
0y = O — O — V;ﬂﬂ-(ﬂ% , (26)
where
b, -
f1=y“‘7; fo==b,—, (27)
gi=Y—X H=x (28)

Using the properties of functions wg(x, y), we can easily construct function ¥(x, y) satisfying conditions
(2'). Function ¥(x, y) will be expressed as

L e e’ PO (29)
©, T ©, i+ 7.

Let u =u~y. Then function @ satisfies the differential equation

Li==—Aitca=fy, f==Ap—cp+f
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and the homogeneous boundary conditions

(—‘QL + Uhﬁ) = 0,
on, T, (%)
it |
Ony, |r,®

Formula (4) represents an approximate solution to the boundary-value problem (1")-(3").
of our problem,” the coordinate functions ¢j(x, y) are

(Pz = A’i —_ (!)OD;\.g,
where

{}"i}r;_{l' X, 4 X% x4, }1

D, = @ . Oyfy + Oofy [ ( oM . Oay + oM, . 0wy )
O 0, h+h 0x dx dy dy

The arbitrary constants are determined from the system of Egs. (20).

Under conditions

(30)

(31)
(32)

Calculations were made on a "Ural-2" computer for i = 6 and the following values were obtained for
the coefficients: ¢y = 147.8093; cy = ~1202.2411; c3 = —-120.2417; c, = 25,701.951; cg= 22,203.284, ¢4

=15,701.951.

The surface shown in Fig. 2b represents the steady-state temperature field of a symmetrical coil

element.

This approximate solution (1) to the boundary-value problem (1')-(2') obtained by the Bubnov-Galer-
kin method is qualitatively the same as the solution obtained in {6] by the relaxation method.

LITERATURE CITED

1 V. L. Rvachev, Geometrical Applications of Logic Algebra [in Russian], Tekhaika, Kiev (1967).

2 V. L. Rvachev, Different. Urav., §, No. 6 (1970).

3 V. F. Kravchenko, A. P. Slesarenko, and V. L. Rvachev, ibid., 6, No. 10 (1970).

4 V. F. Kravchenko, A. P. Slesarenko, and V. L. Rvachev, Dokl. Akad. Nauk UkrSSR, Ser. 6,
No. 12 (1970).

5. S. G. Mikhlin, Numerical Implementation of Variational Methods [in Russian], Nauka, Moscow
(1966).

6. P. Schneider, Engineering Problems in Heat Conduction [Russian translation], IL, Moscow (1960).

1322



